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A rigorous method is proposed to describe and classify the topology of

entanglements between periodic networks if the links are of the Hopf type. The

catenation pattern is unambiguously identified by a net of barycentres of

catenating rings with edges corresponding to the Hopf links; this net is called

the Hopf ring net. The Hopf ring net approach is compared with other

methods of characterizing entanglements; a number of applications of this

approach to various kinds of entanglement (interpenetration, polycatenation

and self-catenation) both in modelled network arrays and in coordination

networks are considered.

1. Introduction

Entanglement in crystal structures is a fascinating phenom-

enon that has been intensively investigated since the 1990s

when Robson and co-workers (Hoskins & Robson, 1990;

Batten & Robson, 1998) drew attention to this part of crystal

chemistry. To the best of our knowledge, the first review of

interpenetrating networks both in inorganic and organic

crystals (such as cuprite Cu2O or �-quinol) was done by Wells

(1954); however, a long time passed before the investigations

of chemically unbonded but spatially non-separable motifs

became important to chemists (Batten & Robson, 1998). Now

the number of examples of merely three-dimensional inter-

penetration is almost 1000 (Alexandrov et al., 2011), while

other types of entanglements have not been comprehensively

catalogued.

The topological properties of entangled motifs were in focus

from the very beginning. It was clear that one of the important

properties was the periodicity of interlocking networks as

well as of the resulting whole entangled array. Wells (1954)

described all kinds of entanglements between three-periodic

networks known at that time. Batten & Robson (1998)

introduced the terms inclined and parallel interpenetration for

different methods of interlocking two-periodic networks.

Batten (2001, 2010) proposed to describe entanglements with

the formula nD/mD! kD (now the form nD + mD! kD is

more useful) where m, n are periodicities of the entangled

networks, and k is the periodicity of the whole array. Carlucci

et al. (2003) and Proserpio (2010) distinguished three types of

entanglements: interpenetration, when m, n coincide with k;

polycatenation, when m, n < k; and self-catenation (other

equivalent terms are self-penetration or polyknotting, cf.

Jensen et al., 2000; Ke et al., 2011). A self-catenated network

exhibits the peculiar feature of containing rings through which

pass other components of the same network (see below for

details). Carlucci et al. (2003) also proposed two kinds of

additional topological parameters: degree of catenation (Doc,

that is the number of networks entangled to a particular one)

and index of separation (Is, that is the number of networks that

should be removed to disjoint the array into two unconnected

parts) that allowed them to classify the entanglements more

thoroughly.

The first attempt to algorithmize the classification of

entanglements was undertaken by Blatov et al. (2004), who

developed a rigorous computer procedure to characterize

three-dimensional interpenetration by the degree of inter-

penetration (the number of entangled networks) and a number

of space-symmetry parameters. This procedure was used to

catalogue 301 interpenetrated metal–organic frameworks

from the Cambridge Structural Database (Allen, 2002). This

approach has also been applied for inorganic and hydrogen-

bonded networks and is routinely used by experimentalists to

analyse three-periodic interpenetration (Baburin et al., 2005,

2008a,b). However, the classification criteria of Blatov et al.

(2004) are mainly geometrical and do not concern the details

of interlocking the entangled motifs. They introduce classes of

interpenetration in terms of crystallographic symmetry rela-

tionships which do not recognize topologically different

interpenetrating network arrays that have the same sets of the

space-symmetry parameters (i.e. for a given net, in the same

class of interpenetration there may be different entangle-

ments). A true topological description of interpenetration

should be free of crystallographic symmetry relationships

which may be affected by non-topological factors such as

molecular geometries, the presence and placement of guest

species etc.

1 A preliminary account of this work was presented at the workshop
‘Topological dynamics in physics and biology’ held in Pisa, 12–13 July 2011.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5016&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5016&bbid=BB40
http://crossmark.crossref.org/dialog/?doi=10.1107/S0108767312019034&domain=pdf&date_stamp=2012-06-14


A more detailed classification of all homogeneous two-

periodic and three-periodic interpenetrating sphere packings

in cubic, hexagonal and tetragonal crystal systems was devel-

oped by Fischer & Koch (1976) and Koch et al. (2006). They

proposed the term interpenetration pattern to distinguish

different methods of interlocking networks irrespective of the

network parts (rings) not participating in the entanglement

and of the size of the entangled parts. All interpenetration

patterns of the homogeneous sphere packings were tabulated,

but practical application of the approach was hindered

because no clear parameters of the patterns were proposed

that would allow one to detect them in crystal structures.

In this paper, we propose a rigorous method to characterize

entanglements. The method is algorithmized and implemented

as a computer routine that makes it useful for distinguishing

and classifying entanglements of any complexity in periodic

network arrays.

2. The method

Let us restrict our consideration to the entanglements caused

only by Hopf links and/or multiple crossing links [as observed

in interpenetrated quartz networks (Delgado-Friedrichs et al.,

2003)] between the network cycles. As both Hopf and multiple

crossing links are pairwise (they occur between two rings, Fig.

1), below we refer always to Hopf links meaning multiple

crossing links too, if not otherwise specified. Thus we avoid,

for the present, the multi-ring Brunnian interlockings

including the Borromean entanglement (Fig. 1), which rarely

occur in crystal structures (Carlucci et al., 2003). We will use

the term catenation for the Hopf link as this method of

interlocking characterizes the class of organic molecules

catenanes. Further, we consider the Hopf links only between

strong rings, i.e. cycles that cannot be represented as sums of

smaller cycles (Delgado-Friedrichs & O’Keeffe, 2005). Unlike

cycles, the number of which is in general infinite, the set of

symmetry non-equivalent strong rings is always finite

(Goetzke, 1993). Moreover, strong rings characterize all

smallest windows in the network (Blatov et al., 2007) and

contain a cycle basis (any cycle in the network is either a

strong ring or a sum of strong rings), so they provide sufficient

information required to describe the overall catenation. Below

we will call them rings for short.

If we then represent each ring by its barycentre and connect

the barycentres of catenating rings we

obtain what we call the Hopf ring net

(HRN), i.e. the net whose nodes and

edges correspond to rings and Hopf

links between them. The following

properties of the HRN are worth

mentioning: (i) the degree (coordina-

tion number) of a node is equal to the

number of rings catenating a particular

ring; (ii) some nodes can have the same

coordinates if the barycentres of the

corresponding rings coincide (i.e. the

nodes collide); (iii) the star of a node

defines the bouquet of catenating rings (by bouquet we mean

the union of a particular ring and all rings that catenate this

selected one), which can be considered as the smallest

collection of catenated rings that characterize the entangle-

ment (Fig. 2).

The concept of the Hopf ring net extends the notion of

complete ring net (CRN) introduced by Baburin & Blatov

(2007) for single nets. In general, the CRN is derived from a

particular network in the following way: the nodes of the CRN

correspond to the barycentres of all rings in the initial

network, while the edges of the CRN connect the rings that

are in contact in the initial network. The method of CRN

construction depends on the definition of such contacts (i.e.

edges). Baburin & Blatov (2007) treated the rings as

connected if they had common edges with the initial network

reference ring. In this work we extend the notion of CRN to

include the presence of Hopf links either from entanglement

of different networks and/or from self-catenation, adding also

the edges for the catenation of the Hopf links but assigning

them to a different type.

Therefore we can distinguish edges in the CRN according to

the type assigned, which corresponds to different methods of
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Figure 2
Two interpenetrating primitive cubic (pcu) networks (array pcu-c) shown in red and blue as well as
the corresponding HRN of nbo (NbO) type highlighted in green. The bouquet of catenating rings
and the corresponding HRN star (green balls) are shown in the second picture from the left.

Figure 1
Hopf, multiple crossing and the three simplest three-component links.
The corresponding edges of the ring nets that connect the ring-net nodes
are shown by arrows. For the Borromean link, the ring-net fragment
contains an additional node in the centre of the link. The program
Knotplot (R. G. Scharein; http://www.knotplot.com/) was used to draw the
link pictures.



linking rings. In this paper, we distinguish two kinds of edges

in the CRN: one corresponds to Hopf links and the other

conforms to any connection of rings within the same network

through the network vertices and edges (such connection may

be provided by one common edge, or just a common vertex, or

even an edge chain of any length). A special case arises for a

self-catenated network where Hopf links exist between the

rings of the same network (see below).

With such different descriptions for the kind of edges,2 the

CRN of the entanglement can be split into two subnets: a

partial ring net, which is derived from the links between the

barycentres of the rings belonging to the same network, and

the HRN. This representation is useful to explore the peri-

odicity of entanglement between the networks: we can

determine the periodicities n and m of two catenating

networks (n and m are equal to the periodicities of the

corresponding partial ring nets where Hopf links are ignored)

as well as the periodicity k of the CRN (i.e. the periodicity that

includes the presence of both kinds of links between rings);

the method of entanglement can then be written as nD + mD

! kD. It must be noted that the periodicity h of the HRN is

limited by k (h � k), but can be higher than n or m (see

examples of polycatenation below).

The HRN directly characterizes the catenation pattern, i.e.

the method of catenation of the rings, if the kind of network

and the degree of interpenetration are fixed. For example, if a

set of structures containing two interpenetrating diamondoid

networks is under consideration, it is sufficient to compare

their HRNs to find the differences in their catenation patterns.

However, to match catenation patterns of topologically

different interpenetrating arrays (the number of inter-

penetrating networks must be fixed anyway) their HRNs

should be reduced beforehand with the two simplification

procedures described below.

First, in general, not all rings are catenated, and hence not

all of them are represented in the HRN. If a catenated ring A

is a sum of another catenated ring B and any number of non-

catenated rings, then A and B are equally catenated and can

be replaced with a single ring in the HRN. This operation is

equivalent to fusing the HRN nodes corresponding to A and

B. Indeed, such equally catenated rings do not carry any new

information about the entanglement and can be treated as the

same ring in the catenation pattern. In the HRN, such rings

can be detected as collisions (Delgado-Friedrichs & O’Keeffe,

2005); the corresponding nodes have the same set of neigh-

bours. For instance, three distinct types of 14-rings in dia-f

(that is a decorated version of the diamond network) are

almost coincident (they share 12 vertices of the 14; see Fig. 3,

left). As a result they have three distinct but almost coincident

barycentres (the three green spheres) giving rise to three

superimposed stars. Because each 14-ring is catenated by the

same set of 18 (six triplets) other 14-rings and share the same

stars in the HRN, the corresponding triplets of the HRN nodes

collide (Fig. 3, middle). After removing collisions each triplet

collapses into one node 6-coordinated (18/3 = 6) resulting in

an HRN of the hxg topology (Fig. 3, right).

Second, not all remaining rings in each interpenetrating

network are independent; some of them are still sums of

several catenated rings. Obviously, such dependent rings also

do not carry any new information on the catenation. So one

should consider only rings from the ring basis, i.e. the minimal

set of rings that generate other rings by summation. To the

best of our knowledge, there is no general algorithm to

determine the ring basis for a periodic network, but a partial

and useful solution of this problem may be found within the

natural tiling approach. According to Blatov et al. (2007) the

natural tiling is the unique method to represent a network as a

set of cages (natural tiles) that are confined by strong rings of a

special kind called essential rings. An important property of an

essential ring is that any strong ring is either an essential ring

or a sum of essential rings, i.e. the set of essential rings can be

treated as a ring basis. The problem is that there are networks

that do not admit the natural tiling, but they are mostly

unimportant for crystal chemistry because of their rare

occurrence. Indeed, all abundant three-dimensional under-

lying networks in inorganic, organic or metal–organic

compounds (see Alexandrov et al., 2011 and references

therein) admit natural tilings [for tilings of networks see the

Reticular Chemistry Structure Resource (RCSR), http://

rcsr.anu.edu.au/; O’Keeffe et al., 2008].

Notwithstanding the fact that the method is applicable to

any set of given rings, so it could also be used to analyse

entanglements for nets that do not admit natural tilings. All

the networks considered in this paper, except specially

discussed examples of self-catenation, admit the natural tiling,

so we will use this approach to determine the ring basis.

Resuming, before comparing two HRNs (i.e. two catenation

patterns), they should be pruned of collisions and the nodes

corresponding to inessential rings. The HRN simplified in this

way unambiguously determines the topology of the catenation

pattern if the ambient isotopy is not taken into account. Recall

that ambient isotopic networks can be superposed in the space

without breaking edges or rings (Hyde & Delgado-Friedrichs,

2011). For example, 3-chain and (3,3)-torus links (Fig. 1) are

not ambient isotopic but give rise to equivalent HRN frag-

ments. One can state that two entangled arrays of networks
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Figure 3
Three equally catenated 14-rings in an interpenetrating array of two
decorated diamondoid (dia-f) networks and the corresponding fragment
of the simplified HRN. All the 14-rings are related via non-catenated
4-rings: 14a-ring = 14b-ring + 4-ring = 14c-ring + 4-ring + 4-ring (see text
for details).

2 In practice, TOPOS (Blatov, 2006; http://www.topos.samsu.ru) assigns to
‘Valence’ the edges between the ring barycentres and to ‘Hydrogen bond’ the
Hopf link edges.



have the same catenation patterns if and only if they have

isomorphic simplified HRNs. The isomorphism of HRNs can

be checked with the methods developed for periodic nets

(Blatov, 2007); if the HRN is a finite graph, the corresponding

methods from graph theory should be used. The TOPOS TTD

collection (Blatov & Proserpio, 2009) can be used to assign the

name to the net topology; this collection currently contains

more than 72 000 net topologies. Thus the method is purely

topological; the catenation patterns can be classified irre-

spective of the space-group symmetry and geometrical

embedding of the entangled networks. It is important that the

HRN topology is independent of the size of catenating rings as

well as of the number and size of non-catenating rings in the

entangled networks. For example, the extension of edges or

the decoration of nodes (without the addition of new Hopf

links) in the networks does not influence the resulting HRN.

Fig. 4 illustrates the similarity of interpenetration in nine

different twofold network arrays (eight of them are inter-

penetrating sphere packings, see below). Here we consider

some possible interpenetrations; the detailed analysis of all

known catenation patterns for a given set of interpenetrating

networks is in progress and will be discussed elsewhere. The

local similarity is obvious from their bouquets, which lead to

the same star of five ring barycentres (cf. Fig. 2). Only one

interpenetrating array which consists of two pcu networks is

fully catenated, i.e. has all rings catenated; in all other cases

there are either inessential rings (cab, nbo) or some essential

rings are not catenated (afw, cab, nbo-a, pcu-g, pcu-h, uku,

unp). Only in two cases (uku, unp) are there links that lead to

collisions to be removed (Table 1). Nonetheless, the simplifi-

cation procedure, i.e. removing both collisions and the nodes

corresponding to inessential rings, gives rise to the same

simplified HRN nbo for all the arrays, which proves that there

is the same catenation pattern in all cases.

We have algorithmized the method and implemented it in

the program package TOPOS (Blatov, 2006; http://www.

topos.samsu.ru). TOPOS provides the analysis of catenation

patterns according to the following general algorithm:

(i) searching for all cycles in the network array and selecting

strong rings [see Blatov (2006) for details];

(ii) searching for all entanglements and selecting Hopf links

[see Blatov (2006) for details];

(iii) distinguishing Hopf links between different networks

(catenation) and within the same network (self-catenation);

(iv) constructing an HRN;

(v) removing collisions from the HRN (merging the nodes);

(vi) determining essential rings in accordance with the

algorithm by Blatov et al. (2007) and removing all HRN nodes

that correspond to inessential rings;

(vii) determining the HRN topology according to Blatov

(2007).

3. Examples

Below we consider different kinds of network arrays and

methods of entanglement to demonstrate the applicability of

the HRN approach. To designate nets, we use bold three-letter

RCSR symbols (e.g. dia for the diamondoid network) and the

Fischer k/m/fn nomenclature for sphere packings (Koch et al.,

2006).

3.1. Networks admitting naturally self-dual tilings

Most naturally, twofold interpenetration is realized in

networks that admit a self-dual tiling: the networks are

isomorphic to their duals (Delgado-Friedrichs et al., 2007). By

definition, in the naturally dual network, the nodes, edges,

essential rings and natural tiles are in one-to-one relation to

natural tiles, essential rings, edges and nodes of the network

under consideration. The simplified HRNs (catenation

patterns) for twofold arrays of 23 interpenetrating naturally

self-dual networks which are stored in the RCSR database are

given in Table 2. The crystallographic data on the inter-

penetrated arrays for cds, dia, hms, pcu, pyr, sda, srs and tfa

were taken from the RCSR database (reported with the suffix

-c). For the other self-dual networks the interpenetrated

arrays have not yet been found in crystal structures (with

the exception of sxd); no data on their embeddings are

available so far. In this case we have generated an embedding

using the TOPOS procedure for constructing dual nets

(Blatov et al., 2007). For one twofold array of naturally self-

dual networks [(4,4)-coor bbr] we could not find any faithful
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Figure 4
The bouquets of catenating rings in nine different network arrays that
lead to the same star of simplified HRN of the nbo topology (cf. Fig. 2).

Table 1
Strong and essential rings in twofold interpenetrating arrays of some
networks.

Network
Sizes of
strong rings

Sizes of
essential rings

Sizes of catenated
essential rings

pcu† 4 4 4
nbo 6, 8 6 6
afw (pcu-n) 3, 7 3, 7 7
cab (pcu-a) 3, 4, 8 3, 8 8
unp (pcu-p) 3, 4, 9 3, 4, 9 9
pcu-g 6, 10 6, 10 10
pcu-h† 6, 10 6, 10 10
uku 3, 4, 6, 10 3, 4, 6, 10 10
nbo-a† 4, 12 4, 12 12

† Array is observed in real structures.



embedding (without crossing edges, cf. Delgado-Friedrichs et

al., 2005).

The simplification procedures are required for the HRNs of

the cds, ftw, mab, pte, rtw, qtz-x, smt, swl and vck twofold

arrays where not all strong rings are essential. One can notice

that for most of the HRNs which describe catenation patterns

occurring in crystal structures (cds-c, dia-c, hms-c, pcu-c, pyr-c,

srs-c, sxd-c and tfa-c) the topologies are rather simple: no

more than three different nodes exist, i.e. the rings in the

interpenetrated array are catenated quite uniformly. In the

hms, mco, tfa and vck arrays, different rings are catenated in a

very close but different fashion: it follows that the coordina-

tion sequences of the corresponding nodes in the HRN are

very close. Since the coordination sequences show the

numbers of nodes in subsequent coordination shells of a

particular node, their similarity means that the catenation

patterns are very close in the vicinity of these rings. For

example, in the hms-c array each of the two non-equivalent

6-rings is catenated by six other rings (Fig. 5, middle); they

correspond to the first coordination shell of the (6,6)-coordi-

nated HRN (Table 2). In turn, these six rings catenate 22 or 24

other rings that form second coordination shells around the

two non-equivalent 6-rings etc.; the numbers of rings in the

subsequent shells of this ‘chain mail’ do not differ by more

than two (Table 2). Obviously, such subtle differences can

hardly be revealed by a visual analysis.

One feature of the interpenetrating arrays under consid-

eration follows from the property of naturally self-dual

networks: every essential ring of one network is crossed by

one and only one edge of the other network, i.e. a twofold

array of self-dual networks is fully catenated (all essential

rings are catenated). As a result, every essential n-ring is

catenated by strictly n essential rings of the other network, i.e.

the coordination numbers of nodes in the simplified HRN are

equal to the sizes of the corresponding rings. For example, a

diamondoid (dia) network contains only one kind of essential

6-rings and the corresponding HRN for dia-c is 6-coordinated

hxg; the essential rings in an srs (SrSi2) network are 10-

membered and the srs-c array has a 10-coordinated HRN (in

every bouquet the n-ring is catenated by n other rings,

Fig. 6).

3.2. Interpenetrating sphere packings and coordination
networks

A good test to verify the proposed approach is to compare

the catenation patterns in terms of simplified HRNs with the

interpenetration patterns of sphere packings by Koch et al.

(2006). In Table 3, all interpenetration patterns in 149 three-

periodic sphere packings are matched to 18 simplified HRNs

(more detailed information is given in the supplementary

material3). Recall that the interpenetration pattern symbol a–

b indicates the crystal system of the array (a = c, h, r, t or o for

research papers
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Figure 5
(Left) Twofold (3,5)-coordinated hms array (hms-c), (middle) the
bouquet of the catenating rings of the two independent 6-rings (6a, 6b
in red) with the HRN stars (yellow and green) and (right) a fragment of
the corresponding (6,6)-coordinated binodal HRN.

Table 2
Simplified Hopf ring nets for twofold arrays of interpenetrating naturally
self-dual networks.

Network Hopf ring net† Network Hopf ring net†

(5,7)-coor cbs‡ (3,4,4,4,4,5)-coor (4,5)-coor rtw‡ (4,5,6)-coor
3 9 20 44 72 4 14 36 78 134
4 10 26 46 80 5 19 49 95 146
4 12 32 59 100 6 20 49 94 149
4 14 28 50 86
4 14 33 61 102
5 15 35 66 100

4-coor cds§ (6,8)-coor 6-coor qtz-x‡ (4,5)-coor
6 28 70 126 198 4 10 26 58 104
8 30 72 128 200 5 15 40 79 135

4-coor dia§ 6-coor hxg 6-coor sda (3,5)-coor
3 10 30 66 110
5 17 38 70 113

(3,3)-coor ete‡ (8,10,11)-coor 6-coor smt‡ (3,4,7)-coor
8 44 126 244 396 3 11 35 74 126
10 50 132 252 408 4 14 40 84 139
11 55 141 262 422 7 23 49 84 135

(4,6)-coor fsf‡ (3,5,6)-coor 3-coor srs§ 10-coor
3 10 30 68 134 10 50 130 244 394
5 17 45 100 184
6 24 64 131 221

(4,12)-coor ftw‡ 4-coor rhr 7-coor swl‡ (3,4,4,4)-coor
3 7 17 35 61
4 11 25 48 78
4 12 26 46 76
4 12 28 50 82

(3,5)-coor hms§ (6,6)-coor 6-coor sxd‡§ (3,4,6)-coor
6 22 54 96 150 3 8 22 54 112
6 24 54 98 150 4 14 40 90 180

6 24 62 132 236
6-coor mab‡ (4,6)-coor (3,4)-coor tfa§ (8,8)-coor

4 16 40 72 112 8 36 92 172 276
6 18 40 72 114 8 36 93 173 278

(3,3,3,4)-coor mco‡ (8,8,8)-coor (3,12)-coor ttv‡ (4,5)-coor
8 36 94 185 305 4 12 28 58 96
8 36 97 185 300 5 15 36 71 116
8 36 98 196 308

6-coor pcu§ 4-coor nbo 4-coor unj‡ (5,8)-coor
5 22 68 156 295
8 34 98 204 344

(4,6)-coor pte‡ (4,5,6)-coor 7-coor vck‡ (3,4,4,4)-coor
4 16 48 92 144 3 7 17 35 61
5 18 45 89 148 4 11 25 48 78
6 20 46 86 150 4 12 27 48 79

4 12 28 50 80
(3,6)-coor pyr§ 6-coor

6 22 58 113 190

† The first five terms of coordination sequences are given for each independent node if
the net topology is not deposited in the TOPOS TTD collection. The abbreviation (n1,
n2, . . . )-coor means that the net contains topologically non-equivalent nodes with n1, n2,
. . . coordination numbers. ‡ No crystallographic data on interpenetrating -c array are
available in the RCSR or elsewhere. § Examples of twofold interpenetrating arrays of
this topology were found in crystals (Alexandrov et al., 2011).

3 Supplementary material for this paper is available from the IUCr electronic
archives (Reference: EO5016). Services for accessing this material are
described at the back of the journal.



cubic, hexagonal, rhombohedral, tetragonal or orthorhombic

system) and the type of interpenetration (b = a–r for 18

different types).

Table 3 shows a clear correspondence between inter-

penetration patterns and simplified HRNs; however, some

differences should be noted. Almost each type of inter-

penetration (a–r) matches a distinct catenation pattern

represented by a unique simplified HRN. The only exception

is the pair h–n, h–q which describes two quartz-like arrange-

ments that differ by labyrinths of the corresponding minimal

surfaces (Koch et al., 2006); the catenation in these arrays has

the same HRN (up to ambient isotopy): at this stage we cannot

differentiate them (Hyde & Delgado-Friedrichs, 2011). Note

also the type r–bc: according to Koch et al. (2006) it can be

related both to b and c interpenetration pattern types since it

can be derived both from c–b and c–c patterns by a rhombo-

hedral distortion. Obviously, the distortion of the c–b pattern

is followed by a change of catenation; the resulting HRN of

the nbo type unambiguously indicates the c type of inter-

penetration.

The HRN reflects only the topological properties of cate-

nation; therefore the same interpenetration patterns that are

realized in different crystal systems conform to the same

simplified HRN. This also results in differences in the

description of interpenetration patterns in the t[3/4/t2]2
I and

t[3/4/t2]2
II sphere packings (corresponding to the twofold dia-g

array): Koch et al. (2006) put them into the t–b and t–a types,

respectively, owing to a different arrangement of screw axes,

while our approach unambiguously relates them to the same

catenation pattern of the hxg type that corresponds to the b

interpenetration pattern (see the supplementary material). At

the same time, two sphere packings t[3/10/c1]2
II of P4322 and

I4122 space-group symmetries (corresponding to the twofold

srs array) fall into the t–b interpenetration pattern type

according to Koch et al. (2006), while they have unique

simplified HRNs and hence a special catenation pattern

(Table 3).

We have shown so far that HRNs correctly characterize the

catenation patterns in the three-periodic interpenetrating

arrays. This allows one to apply them to classify the catenation

patterns in almost 1000 examples of interpenetrating three-

dimensional coordination networks (Alexandrov et al., 2011).

Detailed analysis of this group lies beyond the scope of this

paper, but one can mention that the most abundant catenation

patterns (twofold dia, pcu and srs, which are also deposited in

the RCSR database as dia-c, pcu-c and srs-c) are already

described in Table 2. To explore catenation in coordination
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Table 3
Interpenetration patterns in three-periodic sphere packings according to
Koch et al. (2006) with the degree of interpenetration (Z) and the
corresponding simplified Hopf ring nets.

For each pattern we list the number of sphere packings where it appears (No.
SP) and for how many different network topologies (No. topologies). See the
supplementary material for details.

Interpenetration
pattern Z Hopf ring net No. SP

No.
topologies

c–a, t–a, o–a 2 10-coor 34 16
10 50 130 244 394

c–b, t–b, o–b 2 6-coor hxg 56 16
c–c, r–bc 2 4-coor nbo 20 7
c–d 2 6-coor 1 1

6 22 58 113 190
c–e 2 19-coor 2 1

19 126 423 992 1813
c–f 2 26-coor 1 1

26 196 631 1358 2303
c–g 4 39-coor 1 1

39 348 1153 2505
4210

c–h 4 46-coor 1 1
46 448 1408 2872
4834

c–i 4 34-coor 4 1
34 328 958 1882 3110

c–j 8 92-coor 1 1
92 1050 3122

c–k 8 80-coor 1 1
80 1008 3014

c–l 3 14-coor 2 2
14 92 298 600 986

t–m, o–m 3 12-coor 12 4
12 66 192 356 588

h–n, h–q 2 (12,12)-coor 6 5
12 70 224 444 728
12 70 228 448 732

h–o 3 (14,16)-coor 2 2
14 86 266 576 1034
16 92 266 568 1004

t–p 4 18-coor 2 2
18 108 310 578 954

t–r 5 24-coor 1 1
24 172 514 982 1638

t[3/10/c1]2
II (t–b)

twofold srs
2 (10,16)-coor 2 1

10 56 160 312 508
16 80 198 358 566

Figure 6
Fragments of pcu-c, dia-c and srs-c arrays and the corresponding
bouquets.



networks we simplify them into underlying nets that carry the

information on the connectivity between structural groups

(Alexandrov et al., 2011). Note that the interpenetration in

chemical structures is much more diverse compared to

modelled systems of spheres; for example, a twofold dia array

occurs in hundreds of examples in many different space

groups and in two different classes of interpenetration (Ia and

IIa); nonetheless, all of them (but one) belong to the hxg type

of catenation (Table 2). A different pattern was found for a

unique case that has a binodal 6,10-coordinated HRN in (�2-

1,3-di(4-pyridyl)propane)-(�2-5-nitroisophthalato)Ni(H2O)

(LAYKOM; Xiao et al., 2005).4 In this case, besides rings

catenated by six other rings (which would correspond to the

hxg type), there are multiple links between some 6-rings that

are ten times catenated (Fig. 7).

Similarly, one can consider low-periodic interpenetration.

For example, the most typical interpenetration for two-

periodic coordination networks, a twofold array of square

(sql) networks, has the HRNs of the same sql topology if

every 4-ring of one network is crossed by four 4-rings of the

other network as in [(�2-5-(2-(3-pyridyl)ethenyl)thiophene-2-

carboxylato)2Zn] (ACUCIK; Evans & Lin, 2001) (Fig. 8, top).

This kind of interpenetration reflects the fact that sql is a

naturally self-dual two-periodic network. Note that the inter-

penetration is realized owing to corrugation of the 4-rings and

layers caused by additional two-coordinated nodes that

correspond to organic ligands. With these nodes the rings

become 8-membered, but this extension does not influence the

HRN topology as was mentioned above. However, this pattern

is not the only one for twofold sql arrays; for example, in [(�2-

isonicotinato)(�2-nicotinato)Zn] (YEVWIG; Kang et al.,

2007) the HRN consists of an infinite number of zigzag chains

because each ring is catenated by only two rings of the other

network (Fig. 8, bottom).
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Figure 7
Two different views of the twofold dia array observed in LAYKOM: (a)
shows seemingly regular adamantane-like fragments, but another view
(b) makes distortion evident (see Fig. 6, dia-c, for comparison); there are
two non-equivalent 6-rings (6a, 6b); (c), (d) and (e), (f) show the
corresponding HRN stars and the bouquets that result in the two 6-
coordinated (green) and 10-coordinated (yellow) HRN nodes. The
corresponding 6,10-coordinated HRN is at the bottom.

Figure 8
Twofold arrays of square (sql) networks catenated in two different
fashions: (top) square plane sql HRN in ACUCIK and (bottom) one-
dimensional zigzag HRN in YEVWIG. In both cases the bouquets of
catenating 4-rings and the corresponding HRN stars are shown.

4 Hereafter, for each structure, we specify the Cambridge Structural Database
refcodes along with the references to the original publications.



3.3. Polycatenation

As was mentioned above, the polycatenation phenomenon

features the arrays where the periodicities m, n of inter-

weaving networks are less than the periodicity k of the whole

array. This is the case of interpenetrating two-periodic hcb (63)

and fes (4.82) layers of spheres (Koch et al., 2006) that all have

the same chain-like HRNs since each catenated ring (6-ring in

hcb and 8-ring in fes) is linked to two similar rings of the other

layer (Fig. 9). According to Koch et al. (2006), all inter-

penetrating two-periodic layers of spheres have inter-

penetration patterns of the same type.

Again, polycatenation of coordination networks is much

more diverse. The interpenetrating layers of spheres represent

only one, inclined type of polycatenation when the inter-

weaving two-periodic networks are non-parallel. However,

even polycatenated arrays of this type can have quite different

HRNs. For example, inclined polycatenation of sql layers can

adopt both a chain-like HRN motif as in [(�2-4,40-bipyr-

idine)Cu(H2O)]2MF6 (M = Mo, Nb) (ROZLIC, ROZLOI;

Mahenthirarajah et al., 2009) and a layer-like HRN motif

of the sql topology as in [(�2-bis(4-pyridylmethyl)piper-

azine)(�2-succinato)M(H2O)2] (M = Co, Ni, Cu) (COFNOB,

COFNUH, COFPAP; Martin et al., 2008), or even a three-

periodic dia-type HRN motif as in clathrates of [(pyri-

dine)2Cd{Ag(CN)2}2] (RONZOJ, RONZUP; Soma &

Iwamoto, 1996) (Fig. 10). In the last example, the HRN

periodicity is higher than the periodicity of catenating

networks.

The parallel type of polycatenation also admits various

topologies of the corresponding HRNs. Thus polycatenated

sql layers can adopt two-periodic HRNs of the same sql

topology as in [(�2-1,3-bis(imidazol-1-ylmethyl)benzene)2(�2-

terephthalato)2Zn2] (GIMGIT; Tian et al., 2007) or of three-

periodic 4-coordinated lvt topology as in hydrates of [(�2-

pyridine-2,3-dicarboxylato)-(�2-1,3-bis(4-pyridyl)propane)M]

(M = Cu, Zn) (BONNEY, BONNOI; Wang et al., 2009) (Fig.

11). For the latter example, as for the twofold sql ACUCIK
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Figure 9
Inclined polycatenation of (left) hcb and (right) fes two-periodic
networks and the corresponding one-dimensional linear chain HRNs.
The 4-rings in fes do not participate in links and do not contribute to the
HRN; their centres coincide with the centres of 8-rings of another fes
network.

Figure 11
Parallel polycatenation in (top) GIMGIT and (bottom) BONNEY,
BONNOI underlying nets and the corresponding HRNs, bouquets and
HRN stars.

Figure 10
Inclined polycatenation in (top) ROZLIC, ROZLOI; (middle)
COFNOB, COFNUH, COFPAP; (bottom) RONZOJ, RONZUP under-
lying nets and the corresponding HRNs, bouquets and HRN stars.



(see Fig. 8), the polycatenation is realized by the presence of

bent ligands represented by the additional 2-coordinated

nodes on two opposite sides of the square. With these nodes

the rings become 6-membered, but this extension does not

influence the HRN topology.

If one distinguishes the HRN nodes corresponding to

different entangling networks (for example, by assigning them

different colours), the degree of catenation (Doc) and the

index of separation (Is) can be easily determined. Indeed, Doc

is equal to the number of other colours in the coordination

shells of nodes of a particular colour, while Is is equal to the

number of groups of nodes of the same colour that should be

removed to disjoint the HRN. In particular, BONNEY,

BONNOI and GIMGIT are characterized by Doc = 2 and Is =

1 (Fig. 11). For inclined polycatenation only Doc is defined; it

is 1 for ROZLIC and 2 for COFNOB and RONZOJ.

3.4. Self-catenation

Self-catenated nets are single nets that exhibit the peculiar

feature of containing rings through which pass other compo-

nents of the same network. In more detail, we must refer to the

topological classification of nets, represented by their vertex

symbols (Blatov et al., 2010); if one of the ‘shortest rings’ is

catenated by other ‘shortest rings’ of the same net we can

speak of a ‘true’ case of self-penetration. This is a necessary

condition to be accomplished, since, otherwise, catenated rings

or even knots can always be found in any kind of network,

provided that sufficiently large circuits are considered.

Unfortunately, such rigorous definition has not always been

applied and nowadays we can find many papers describing not

‘true’ self-catenated networks (see e.g. Ke et al., 2011 and

references therein). Description of the self-catenation

phenomenon in terms of HRNs is similar to that of other types

of catenation. As was mentioned above, we distinguish the

edges of the HRNs corresponding to the links between rings

of the same network and of different networks, so it is easy to

separate the subnet describing self-catenation. The only

problem is that not all self-catenated networks admit natural

tilings; moreover, if the natural tiling exists, the catenated

rings are always inessential and do not belong to the ring basis.

This means that classification of catenation patterns can be

difficult in some complicated cases: the ring basis should be

chosen separately for the catenated rings. However, in most

chemically reasonable cases, the ring basis can be easily

chosen even manually. For example, in probably the most

famous self-catenated network of coesite type [a silica poly-

morph, coe; see Carlucci et al. (2000) and references therein],

the catenation occurs only between 8-rings, while the ring

basis is formed by essential 4-, 6-, 9- and 10-rings (see the

RCSR database). Nonetheless, the HRN is quite simple

(chain-like, Fig. 12), and obviously the 8-rings are independent

of each other (they form a basis of catenated rings).

Another example is the twt-type network that occurs in

the chloroform solvate of [(�2-2,4,6-tris(4-pyridyl)-1,3,5-tri-

azine)Ni(NO3)2] (GOQWOY; Abrahams et al., 1999) and as

twofold interpenetrating arrays in [(�3-4,40-dicarboxy-2,20-

bipyridine)M(H2O)2] (M = Co, Ni) (RAKBIO01, GAGWUH;

Tynan et al., 2004), i.e. two types of entanglement, inter-

penetration and self-catenation, occur in the last two exam-

ples. In all the cases, the self-catenation is characterized by a

4-coordinated three-periodic HRN hxg-d-4-P6222-2 (Fig. 13),

which can be derived from 10-coordinated hxg-d by group–

subgroup relations (Blatov, 2007). The catenation pattern for

the twofold arrays differs from those for self-dual networks

and sphere packings; the corresponding HRN is (14,20)-

coordinated. The ring basis for twt is well defined; it contains

12-rings of two kinds catenated by 14 and 20 12-rings of the
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Figure 12
(Left) Self-catenated coesite (coe) network and the corresponding HRN;
(right) bouquet and HRN star.

Figure 13
(Top) Self-catenated twt network and the corresponding HRN; (bottom)
bouquets of catenating 12-rings and the corresponding HRN star. The
catenated 12-ring is red, the four catenating 12-rings with numbers 1–4
are blue, and the HRN nodes (centres of 12-rings) are green.



other network in the twofold array, while in the self-catenation

the 12-rings of only one kind participate (Fig. 13). The self-

catenation patterns are the same in all three structures irre-

spective of additional interpenetration.

As can be seen from the two examples above, the study of

HRNs in self-catenated nets is not straightforward, so a

detailed analysis of self-catenation patterns in coordination

networks will be the subject of future papers.

4. Conclusion

The Hopf ring nets (HRNs) are shown to be a rigorous

method for identifying catenation patterns irrespective of the

geometry of interweaving networks. We have demonstrated

that HRNs are capable of representing different patterns

within net arrays that are normally classified in the same

interpenetration classes (Blatov et al., 2004) and also of

analysing polycatenation [a much less studied area of the

entanglement phenomenon (Proserpio, 2010)]. Our first

application of the method will be to compute HRNs to classify

the catenation patterns in 1000 reported interpenetrated

coordination networks. For example, there are around 40

structures described as dia fourfold interpenetrated subdi-

vided into five different classes that are described with only

two different HRNs. Such taxonomy should help us gain a

deeper insight into the nature of entanglement and to develop

the design methods for new interlocking motifs.

This approach can easily be extended to other types of links

between rings. In HRNs, such links are the simplest 2-ring

(between two rings), while in the Borromean entanglement

the links are 3-ring (Fig. 1), or, in general multi-ring (like the

Brunnian interlocking). Such multi-ring links can be repre-

sented as additional multi-coordinated nodes in the resulting

ring net. In this representation, a Hopf link corresponds to a

trivial case of an additional 2-coordinated node of the ring net;

such a node can be replaced by an edge without losing the

information on connectivity (Fig. 1). Note, however, that such

an extension is of mainly theoretical than practical importance

since non-Hopf-type entanglements are quite rare in crystal

structures. A further development of the method will be its

extension to recognize not ambient-isotopic catenation

patterns.
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